A Low Rank Tensorial Approximations method of computation of Singular Values and Singular Vectors for SVD problem

نویسندگان

  • A. Milnikov
  • David Agmashenebeli Alley
چکیده

A new method of computation of singular values and left and right singular vectors of arbitrary nonsquare matrices has been proposed. The method permits to avoid solutions of high rank systems of linear equations of singular value decomposition problem, which makes it not sensitive to ill-conditioness of decomposed matrix. On base of Eckart-Young theorem, it was shown that each second order r-rank tensor can be represent as a sum of the first rank r-order “coordinate” tensors. A new system of equations for “coordinate” tensor’s generators vectors was obtained. An iterative method of solution of the system was elaborated. Results of the method were compared with classical methods of solutions of singular value decomposition problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

Computing low-rank approximations of large-scale matrices with the Tensor Network randomized SVD

We propose a new algorithm for the computation of a singular value decomposition (SVD) low-rank approximation of a matrix in the Matrix Product Operator (MPO) format, also called the Tensor Train Matrix format. Our tensor network randomized SVD (TNrSVD) algorithm is an MPO implementation of the randomized SVD algorithm that is able to compute dominant singular values and their corresponding sin...

متن کامل

Subspace Iteration Randomization and Singular Value Problems

A classical problem in matrix computations is the efficient and reliable approximation of a given matrix by a matrix of lower rank. The truncated singular value decomposition (SVD) is known to provide the best such approximation for any given fixed rank. However, the SVD is also known to be very costly to compute. Among the different approaches in the literature for computing low-rank approxima...

متن کامل

Face Recognition Based Rank Reduction SVD Approach

Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012